
Sparse sampling and reconstruction for an
optoacoustic ultrasound volumetric hand-held
probe

MOHAMMAD AZIZIAN KALKHORAN1,* AND DIDIER VRAY2

1CRUK Cancer Imaging Centre, Institute of Cancer Research, London, SM2 5NG, UK
2Université de Lyon, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR5220, Inserm U1044,
INSA-Lyon, Lyon, France
*mohammad.azizian@icr.ac.uk

Abstract: Accurate anatomical localization of functional information is the main goal of
hybridizing optoacoustic and ultrasound imaging, with the promise of early stage diagnosis
and disease pathophysiology. Optoacoustic integration to ultrasound is a relatively mature
technique for clinical two-dimensional imaging, however the complexity of biological samples
places particular demands for volumetric measurement and reconstruction. This integration is
a multi-fold challenge that is mainly associated with the system geometry, the sampling and
beam quality. In this study, we evaluated the design geometry for the sparse ultrasonic hand-held
probe that is popularly associated with three-dimensional imaging of anatomical deformation,
to incorporate the three-dimensional optoacoustic physiological information. We explored the
imaging performance of three unconventional annular geometries; namely, segmented, spiral,
and circular geometries. To avoid bias evaluation, two classes of analytical and model-based
algorithms were used. The superior performance of the segmented annular array for recovery
of the true object is demonstrated. Along with the model-based approach, this geometry offers
spatial invariant resolution for the optoacoustic mode for the given field of view. The analytical
approach, on the other hand, is computationally less expensive and is the method of choice for
ultrasound imaging. Our design can potentially evolve into a valuable diagnostic tool, particularly
for vascular-related disease.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

It has become increasingly clear that a comprehensive understanding of morphogenesis and
disease requires three-dimensional (3D) measurements of tissue structure. An effective 3D
imaging technique that can report on multi-scale targets in a time-resolved manner is crucial for
achieving this goal. Although ultrasound imaging is a main tool for clinical examination, the
current requirement for 3D imaging poses new difficult challenges with respect to the design
pattern [1,2]. Additionally, due to the insignificant echogenicity of microstructures, physiological
changes are almost transparent under ultrasound B-mode imaging [3]. By taking advantage of
optical contrast, optoacoustic imaging can be used to detect this type of information and translate
it into ultrasound waves [4–7]. More recently, the combination of these two provides the potential
for functional imaging in a range of clinical applications [8–10], such as angiogenesis [11],
hemodynamics [12], atheroma [13], oncology [14], thyroidology [15] and hepatology [16], to
name but a few. However, for volumetric imaging, this combination has several limitations [17,18].
The low signal-to-noise ratio (SNR) of optoacoustic signals might require relatively large (>10λ)
transducers [19–21], while beam-forming in ultrasound imaging is demanding for transducers of
the order of central wavelengths (λ) [22]. Both modalities require large apertures through sparse
distribution of limited numbers of elements [23,24]. Until recently, the Shannon-Nyquist theorem
was the dominant choice for digital sampling by dictating a regularly spaced sensing pattern
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with the minimum rate of twice the central frequency. Following the theory of compressed
sensing, it was shown that this line of thought can be obviated at the acquisition site [25–27].
The geometrical distribution of transducers (elements) has a similar role to the sampling pattern
in compressed sensing. To take the advantage of this framework, careful engineering must
be implemented, in terms of a sensing mechanism that emulates a randomized incoherent
sampling pattern. Hence, by practicing the three principles of incoherence, sparsity, and random
subsampling, a drastic reduction in the number of transducers with confidence in reconstruction
fidelity is expected. Indeed, sparsity is exploited with a proper reconstruction algorithm, where
the recovery of important coefficients is guaranteed.

In our companion paper [28], we presented the conceptual framework for designing a bimodal
array, and argued the performance of three sampling patterns (Fig. 1). Here, we complement our
original study by providing reconstruction-based analysis and further validation for simulated
data. We investigate feature fidelity to the object that is associated with the merit of the
reconstruction algorithm. In practical terms, the use of inverse problems in array imaging
forms the deconvolution problem, which faces the ill-posedness [29, 30] and large-scale [31–33]
challenges. Given the partial view angle of the hand-held probe, the forward model is rank-
deficient [28], and thus effective regularization must be incorporated. In this paper, we seek the
answer in Krylov subspace, in which a hybrid regularization method combines the few steps of
conjugate gradient least squares (CGLS) with total-variation (TV) penalization. In general, the
success of sparsity-based reconstruction appears to be tied to the incoherence and to the restricted
isometry property [26]. However, to the best of our knowledge, there is no useful theoretical
guarantees for compressed sensing in acoustic-array imaging, specifically with respect to the
sampling pattern. Here, we pursued an empirical method to establish an intuitive link between the
sampling pattern and the uniqueness of the solution. To avoid the bias evaluation, we compared
our result with a modified version of back-projection developed in our earlier study [34], here
referred to as virtual element weighted delay and sum back-projection (VE-WDSBP). As the
hand-held probe is far from an ideal imaging system, mainly due to the associated limited angle
of view, spatial under-sampling, and finite-element size, the potentials of both reconstruction
algorithms to deal with nonideal imaging scenarios are investigated in detail. The results are
evaluated in terms of reconstruction quality, achievable resolution, and quantitative metrics.

Fig. 1. The geometrical distribution of the 128 elements (convex transducers). The recorded signal
for the large elements equates to the ensemble signals recorded by λ/2 sub-elements of the same size,
which constitutes the sampling pattern.

2. Image reconstruction problem

In general, acoustic image reconstruction involves estimation of the object inner structure based
on emitted or reflected waves. These waves are recorded by transducers in the form of time-gated
radiofrequency signals, at several positions. Basically, each recorded signal equates to a projection

                                                                      Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1546 



in the tomographic set-up, and can thus be formulated in the form of least squares (Ax = b), and
by using the inverse problem to recover the acoustic (or optical) properties of the tissue.

2.1. Problem formulation

A linear discrete forward model for an idealized discrete-time linear shift-variant system can be
derived by modeling a spherical acoustic wave for each voxel-transducer pair [35]. The sources
can be assumed to be uncorrelated bipolar (optoacoustic) or monopolar (ultrasound), and are
arranged in a lattice pattern with spacings of the diffraction limit. In general, the recorded
pressure in a linear system can be approximated by the convolution of three terms: the acoustic
impulse response (AIR), the spatial impulse response (SIR), and the source signal itself [28].
Along with the AIR, the SIR represents the spatial variant low pass filter in a linear shift invariant
system, otherwise known as the transfer function. Basically, it correlates the acoustic wave of the
k th source Sk to the recorded signal Urec through the nth element of the array.

Urec(r, t) =
∑

r ∈FoV

hAIR(t) ∗ hSIR(r, t) ∗ S(rs − rn), (1)

hIR = hAIR(t) ∗ hSIR(rs − rn, t), (2)

where the impulse response hIR is sampled temporally and discretized to consist of L temporal
samples. Expanding the formula for every discretized point within the aperture field of view
(FoV) yields a time-discrete matrix representation of the above formula.

Un
rec = M · Sx,y,z

k
, (3)

For the array of N transducers, the received signals represent the response of the transducers
to an ensemble of incident waves that emanate from K sources within the FoV, with a vector
representation of Sx,y,z

k
= [S1, S2, ..., SK ]T . Similarly, the recorded signals of length L can

be represented in the form of Un
rec = [U1

rec,U
2
rec, ...,U

N
rec]T . The forward model M(N×L)×K

describes the spatiotemporal response of the transducers to a set of sources. Once the relationship
between the sources and the recorded signals has been modeled via a linear and discrete imaging
operator M , diffraction-limited source localization is possible by least-squares inversion:

Ŝ = arg min
z
‖M .S −Urec ‖22 (4)

Ŝ = M†.Urec (5)

where Ŝ is the discretized estimation of the source; viz. the final image. The quality of Ŝ is
profoundly dependent on the properties of M , and thence the aperture. For instance, it was shown
that the number of projections is strictly bound to the number of elements, or the frequency
response of the transducers influences the spatial and temporal resolution [36]. However, quality
assessment of an imaging system solely on the basis of the final image is not a flawless approach,
as the inversion step can be devious. Due to the limited number of elements, the forward model
or sensing matrix can be ’fat’ (i.e., more columns than rows). Therefore, M is a nonsquare matrix
with large condition number that further increases the ill-posedness of the inversion, such thatM−1e

 � ‖Sexact ‖, thus hiding the Sexact among the inverted errors (e). To cope with this
issue, regularization can be imposed to reduce the sensitivity of the solution to error, and to
compute a stable solution. However, when the variance of error is not known, the choice of
method (e.g., generalized cross validation, normalized cumulative periodogram, L-curve, etc.)
for finding the optimal regularization parameter would bias the results [37]. Regularization by
projection is yet another way in which the solution to the least squares is restricted to lie in a low
dimensional subspaceWκ (i.e., ‖Ax − b‖2 is subjected to x ∈ Wκ). Theoretically, the subspace

                                                                      Vol. 10, No. 4 | 1 Apr 2019 | BIOMEDICAL OPTICS EXPRESS 1547 



Wκ is spanned by vectors that represent the desirable features for the regularized solution. A
particular examples of this type is the truncated SVD (TSVD), where the κ dimension subspace
is the space spanned by the first κ right singular vectors v.

TSVD :Wκ = span{v1, v2, · · · , vκ} (6)

Knowing that the solution exists in this subspace with the requirement of S =Wκ z, the regularized
solution can be expressed as a projection problem:

S(κ) =Wκ z(κ) (7)
z(κ) = arg min

z
‖(MWκ)z −Urec ‖2 (8)

For small κ, MWκ can be explicitly calculated to solve the projected least-squares problem,
and hence to achieve the low-rank approximation [38]. The advantage of the SVD basis is that it
can adjust itself to the problem explicitly by accommodating to the matrix M, although there
are limitations associated with the SVD, which include the computation cost. Another equally
comprehensive yet computationally attractive subspace is Krylov, which is defined as:

Krylov: Kκ = span{MTUrec, (MT M)MTUrec, · · · , (MT M)κ−1MTUrec}, (9)

Krylov subspace with a maximum κ dimension can adapt itself fully to the case in hand by
incorporating the information of both of the quantities M and Urec . Let us acknowledge that
the linear least-squares functions are associated with so-called normal equations of the form
MT MS = MTUrec; with MT M being a Hermitian positive semi-definite matrix of M. This
property allows us to use conjugate gradients to solve the least-squares problem. By applying κ
steps of conjugate-gradient iteration on the normal function, the S(κ) will be realized. The use
of CGLS in the computing of regularized solutions in the Krylov subspace Kκ is referred to as
regularizing iterations [37]. Intuitively, CGLS constructs a polynomial approximation to the
regularized pseudo-inverse of M . The intrinsic polynomial of CGLS explains how it converges
faster than SVD-based regularization. When the SVD component (uTi Urec) is large, with ui as
the ith left singular vector, CGLS automatically constructs a polynomial with eigenvalues (σ)
of the MT M projection on the Kκ . This acts as a filter factor by enforcing ’near σi roots’ to
knock out large SVD components (uTi Urec)2 [39]. Therefore, the solution space is minimized to
a subspace of small dimensionality. The downside is that it accommodates to the error correlated
with the recorded data Urec, which can lead to false estimation (e.g., artifacts).

2.2. Total-variation minimization

The use of an accurate forward model is crucial for iterative reconstruction algorithms, although
the choice of the regularization method is of critical importance as well. The aim of the
regularization is to make the problem well-posed by constraining the estimate to a prior, based
on the statistical assumption of the error. The Hessian matrix MT M has poor conditioning,
which in turn results in very slow convergence and non-unique solutions [40]. As the sampling
transducers are limited in number, M is an underdetermined matrix equation that obviates the
Hadamard well-posedness definition. Thus, additional constraint is crucial to estimate the ’best’
candidate. A well-known technique is to impose a linear transformation to precondition the linear
least-squares problem. The conjugate gradient can be preconditioned by classical Tikhonov or
other forms of `2 in order to face the erroneous. These quadratic techniques are more suitable
when the object tends to be smooth, as high-frequency variations are penalized. To tackle the
undersampled measurements in a much more efficient way, there is the need to incorporate
the nonstandard data fidelity terms [41]. However, in practical computations, the estimate ŝ is
indistinguishable from any ŝ + e if ‖ ŝ + e‖2 is less than the round-off error. These challenges
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can be faced by external regularization that considers nonquadratic penalties that incorporate
different types of a priori, such as sparsity and nonnegativity. The remarkable gradient-based
sparsifying characteristics of the TV allow achievement of the piece-wise constant `1 form of
recovery [42]. TV overcomes the limitation of Tikhonov by preserving the sharp edges.

TV(S) = ‖|∇S|ε ‖1 =
∑

i

√
(∆x

i S)2 + (∆y
i S)2 + ε2 (10)

where ∆xi and ∆yi correspond to the horizontal and vertical first-order differences at the ith pixels.
The superior performance of TV over the `1 norm (`1 =

∑
i |∆xi S |+ |∆yi S |) has been demonstrated

in many applications of compressed sensing [43–45]. The advantage lies on penalization where
the discontinuities, such as sharp edges, are preserved but are not necessarily preferred over
the smooth ones. Instead, their presence hinges upon the detected signals. By applying TV to
Krylov subspace, an inexact solution (although reliable) can be found in the restricted Krylov
subspace [46].

z(κ) = arg min
z
‖(MWκ)z − Urec‖2 + λTVTV(z) (11)

that satisfies:
MT MS + λTVTV(S) = MTUrec (12)

where the regularization parameter (λTV ) balances the trade-off between data fidelity (the first
term) and regularization (the second term), and it is chosen heuristically. To the best of our
knowledge, there is no general criteria, such as L-curve, to estimate the TV regularization
parameter. Moreover, the nonquadratic properties of the TV norm hinders the integration with
the linear conjugate gradient [47]. To solve the above equation, we followed the so-called
superiorization approach [48, 49], where the penalty term is replaced by perturbation steps
between iterations, to shift the path toward an intermediate solution [50]. This shift is subjected
to the second criterion, defined by the TV. Here we implemented the S-CG-K pseudo-code in
Ref. [49] in Matlab.
There are two questions that need to be addressed here: (a) can S be represented sparsely in

the formed basis; and (b) whether the enforced sparsity suits the sampling patterns. The answer
might lie in the principle of incoherence, which demands a sampling pattern in which the induced
artifacts spread through the sparse domain such that their corresponding coefficients can be easily
penalized by λTV [51]. For the given sampling patterns, we compare the performance of this
approach with a variation of gold-standard analytical back-projections.

2.3. Virtual element weighted back-projections

Alternatively, one can back-project the recorded pressure signals with respect to the time of flight
via a spherical polygon, which is centered at the detector element. For ultrasound imaging, the
time of flight from the center of the transmitting elements centered at rt is added accordingly.
When large defocused elements (i.e., convex surfaces, negative lens), the concept of the virtual
element must be applied as well. Briefly, an extra distance that corresponds to the radius of
curvature of the defocused element is added, and a weighting with respect to the calculated
directivity would be applied on the polygon [52]. To form the image, the previous step is repeated
for every receiving element or sub-aperture that is associated with a projection. Finally, all of the
projections are compounded coherently on a voxel-by-voxel basis to perform synthetic focusing.
The quality of this localization is conditional on the λ/2 inter-element spacing, the active area of
the transducer, and the number of angular projections. Albeit, not all can be met flawlessly for
the sparse aperture. Consequently, the back-projection estimation suffers from the reconstruction
artifact. In our previous study [34], we suggested a modified weighting factor W that penalizes
these artifacts in an adaptive manner. The performance of this approach is highly dependent on
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the number of projections, and it might suit ultrasound techniques better than optoacoustics. For
the sake of completeness, we summarize here the algorithm, as follows:

1. Back-project the recorded signals for each element (or sub-aperture);
2. Repeat step 1 for every virtual sub-element of size λ/2;
3. Apply the inverted SIR map to compensate for the imposed directivity;
4. Coherently compound the projections associated with every sub-aperture;
5. Calculate and apply the adaptive weighting factor to surpass the quality of the image in

terms of the SNR, contrast, and resolution.

2.4. Figures of merit

Here we take advantage of the commonly used image metrics to quantify the quality of the visual
information. Meaningful visual information is conveyed by contrast. This is particularly important
in ultrasound imaging, specifically for anechoic regions, such as cysts and blood vessels, where
the off-axis clutter noise and phase aberrations complicate the anatomical measurements [53, 54].
The contrast resolution is commonly quantified by the contrast-to-noise ratio (CNR), which
indicates the relation between lesion detectability, object contrast, and acoustic noise (e.g., speckle
variance, acoustic clutter.)

CNR =
Si − So√
σ2

i + σ
2
o

(13)

where Si and S0 are the spatial means, and σ2
i and σ2

0 are standard deviations of the log image
inside and outside the lesion, respectively. Additionally, we considered other metrics, such as
range of full width at half maximum (FWHM) for each measured point spread function, peak
SNR (PSNR), and the structure similarity (SSIM) index. We used the point source/ reflector
images to compute the local point spread function. As the point spread function is the measure
of intensity distribution, -6 dB is often used in the logarithmic scale images. We studied the axial
plane (C-scan) for optoacoustic imaging and the lateral plane (B-mode) for ultrasound imaging.
Multiple point reflectors (for ultrasound) and point sources (for optoacoustics) are positioned
within the FoV as a measure of the point spread function of the system. Certain structural artifacts
occur due to the compressed sensing and reconstruction processes. Along with the FWHM, the
PSNR and the SSIM provide additional information for system performance evaluation [55–57].
The PSNR is a common image quality assessment metric, and is defined as:

PSNR(f, g) = 20 log10
MAXI

1
MN

∑M
i=1

∑N
j=1(fij − gij)2

(14)

where M AXI is the the maximum possible value of the image, and f and g are the reference and
test images, respectively. A higher PSNR indicates less distortion and high reconstruction quality.
However, the PSNR is not sensitive to the pixel spatial relationship. Another widely used metric,
the SSIM, assesses the image quality based on distortion of the structural information.

SSIM(f, g) =
(2µfµg + c1).(2σf,g + c2)
(µ2

f + µ
2
g + c1).(σ2

f + σ
2
g + c2)

(15)

where µ is the average intensity of the given image, and c is the infinitesimal variable to stabilize
the division.

3. Results

A natural question arises on the abilities of the designed arrays, represented in Fig. 1, in delivering
high-quality images. The two introduced reconstruction algorithms were used to evaluate
the performance of arrays in terms of the quality of the detected signal and artifacts, and to
characterize the data fidelity.
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Fig. 2. Evaluation of the B-mode performance of the three virtual arrays based on the contrast and
resolution. I. The images of the anechoic cysts. II. The CNR value based on the white (cysts) and red
(background) frames. III. The VE-WSAFT reconstructed B-mode images of the point reflectors. IV.
The lateral profile of the reconstructed images for each of the arrays at the range of 20 mm.

3.1. Ultrasound

To exploit the achievable ultrasound resolution through the proposed sampling patterns, we
simulated the total focusing method, in which signals from every transmit-receive pair are
processed [58]. Here, we only investigate the VE-WDSBP algorithm performance, as the forward
model is relatively large [33] and requires a powerful computer [31]. Thus, the model-based
reconstruction is deferred to later studies.

Figure 2.(a) illustrates the results of the B-mode reconstruction of the numerical phantom that
contains three anechoic cysts of 3 mm in diameter, using the VE-WDSBP method. The CNR of
each image has been calculated, considering the speckle background as the signal-dependent
noise. Even though the annular circular array shows better contrast (Fig. 2.(b)), the segmented
annular array represents a uniform energy distribution and speckle shape across the entire FoV.
Figure 2.(c) depicts the achievable resolution and the dynamic range (main lobe to side lobe ratio)
for each array. The simulated phantom contains a set of point reflectors with unity amplitude
distributed over the volume of 16 mm by 32 mm, for y-plane= 0. The superior estimation of
the segmented annular array in obtaining an isotropic spatial response, precise localization and
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slightly better dynamic range (1-5 dB) is evident in Fig. 2.(d). The lateral resolution is the same
for all of the apertures, and is in the range of 223-229µm.

Fig. 3. Optoacoustic imaging performance of the three virtual arrays for retrieving the point sources
(point spread function) situated in the axial plane at a depth of z = 20 mm, in the x − y plane of
16 × 16 mm2 size. The reconstructed images used VE-DSBP (upper row) and model-based CGLS
(lower row) with only 10 iterations (10 basis). The color bar is in dB.

3.2. Optoacoustics

Figure 3 shows the optoacoustic imaging performance of three virtual arrays in C-scan. A set of
point sources situated at the depth of 20 mm are distributed equidistantly (1.5 mm) within the
axial plane of 16 × 16 mm2, parallel to the surface of the arrays. The C-scan reconstruction
was carried out using the two methods discussed, VE-WDSBP and CGLS. As these results are
suggesting, it is only the segmented annular array that can retrieve all of the points in the medium,
using the CGLS algorithm. The peculiar geometry of the segmented annular array allows for
every voxel within the volume of interest to be sensed by all of the elements. Figure 3 suggests
that VE-WDSBP is a reliable method only when the FoV is equal to the aperture size, and with
lower resolution compared to CGLS. Regardless of the reconstruction algorithm, the other two
apertures are not capable of isotropic focusing. Indeed, the estimated values for many of the
points are below the artifact level.

Fig. 4. Model-based reconstruction using CGLS (left) and CGLS TV (right) for the segmented annular
array. Ten and fifty iterations were used correspondingly for the CGLS and CGLS TV algorithms.
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Figure 4 shows the result of CGLS TV for the segmented annular array, which is compared with
CGLS. These results are indicative and perhaps conclusive for subjective qualitative assessments.
The CGLS TV shows a more robust estimation, with no sign of artifacts up to 30 dB.

Table 1 quantifies these through a set of metrics as a measure of the data fidelity, and outlines
the range of achievable resolution. Based on these metrics, the least distortion and best match with
respect to the ground truth is provided by CGLS TV for the segmented annular array. Similarly,
the best resolution with the smallest FWHM is achievable by CGLS TV for the segmented annular
array.

Table 1. Quantitative evaluation of sampling patterns.

Figure of merit Method Circular Spiral Annular

PSNR

VE-WDSBP 20.27 22.15 16.82

CGLS 15.83 15.68 19.49

CGLS TV – – 22.5

SSIM

VE-WDSBP 0.0912 0.1324 0.086

CGLS 0.2004 0.1022 0.1340

CGLS TV – – 0.167

FWHM(µm)

VE-WDSBP 246-464 200-648 296-414

CGLS 397-1112 289-551 180-372

CGLS TV – – 130-180

4. Discussion and Conclusion

In this paper, we evaluated the effects of sensing element patterns suggested by our previous
pre-reconstruction analysis on the imaging performance of a sparse bimodal hand-held probe.
A major emphasis was put on modifying the image reconstruction algorithm to increase the
fidelity of the object estimation, and hence the accuracy of the reconstruction. The two befitting
classes of the reconstruction algorithm were modified to incorporate the geometric properties of
the aperture. An adaptive weighting factor along the virtual element concept was used in the
VE-WDSBP algorithm, which allowed to relax the imposed λ/2 inter-element spacing required
in the classical sampling. Despite the honed accuracy of the estimation, there are shortcomings in
the optoacoustic images (Fig. 3) due to the limited number of available projections. Specifically,
the marginal areas suffer the most due to the limited view angle associated with the individual
elements in the aperture. The diffraction imposed by the finite size of the transducer is demanding
for an alternate approach in which the effects of a spatiotemporal filter are nullified. By using the
forward model as the imaging operator, the model-based approach offers a more accurate solution,
with the results in favor of the segmented annular array. In the reconstruction of the C-scan
optoacoustics, the CGLS clearly outperforms the VE-WDSBP. To increase the robustness for
outliers and sharper profiles, a form of TV minimization using the superiorization technique was
incorporated. The important feature is that the estimation errors can be minimized by perturbing
the solution within each iteration. This algorithm remarkably mitigated the artifacts that arose
from the limited angle of view of the hand-held probe, as well as the sparse sampling.
Withal, VE-WDSBP has been used in ultrasound B-mode images for the sake of simplicity

of calculation and to avoid the computational cost of the large total focusing method matrix
inversion. Considering the valuable diagnostic information of the speckles in B-mode ultrasound,
we noted the distinguishable different speckle patterns between the arrays. Initially, we postulated
a granular structure as the resolution cells. Nonetheless, the shapes of these coherent interference
artifacts are highly associated with the phase of back-scattered echoes, and their averaging over
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the surface of the aperture. Therefore, this leaves the question whether the structure offered by
the annular spiral is better or worse in comparison with the segmented annular array. While we
successfully demonstrated the superior performance of the segmented annular array in terms of
resolution, uniform sensitivity, and CNR, the blurring artifact is clearly visible for the marginal
points for all of the images. We interpret this as the limitation of the algorithm for FoVs larger
than the aperture size, and not as a physical limitation of the array itself.
Based on the reconstructed images, a qualitative and quantitative comparison analysis was

followed between the three proposed geometries. Overall, the imaging performance of the
segmented annular array outweighs the others, considering the resolution, detectability, and
uniform response for both modalities. In conclusion, this study presents the development of a
hand-held probe and the adopted algorithms for volumetric optoacoustic ultrasound imaging.
The dynamics of a new geometry for volumetric optoacoustic ultrasound imaging has been
assessed. Last but not least, we restricted our analysis to the geometric properties of the
arrays. As optoacoustic/ ultrasound imaging, the segmented annular array provided acceptable
performance and is expected to have an impact on bimodal portable measurement systems.
Further optimization with respect to the transducing properties and the experimental evaluation
are deferred to future studies.
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